

DEPARTMENT OF ELECTRICAL & ELECTRONICS ENGINEERING

LESSON PLAN

Course Code	Course Title	Year/Sem	Branch	Contact Hrs/Week	Section
R20	AI APPLICATIONS TO ELECTRICAL ENGINEERING (PROFESSIONAL ELECTIVE – V)	IV/I	EEE	5	EEE

COURSE OUTCOMES:

At the end of the course students are able to

<u>CO1</u>: Analyse different models of artificial neuron & Use learning methods of ANN.

CO2: Evaluate different paradigms of ANN.

<u>CO3</u>: Classify between classical and fuzzy sets.

CO4: Illustrate different modules of Fuzzy logic controller.

CO5: Apply Neural Networks and fuzzy logic for real-time applications.

Unit No.	Out Comes	Out Comes TOPIC(S)		BOOK Referen	Total period	Delivery Method	GATE/ IES
			UNIT I - Introduction	ce			
1	CO1:To understand artificial neuron models & learning methods of ANN.	1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9	Artificial Neural Networks (ANN) Humans and computers Biological neural networks ANN Terminology Models of Artificial neuron activation functions typical architectures biases and thresholds Learning strategy(supervised - unsupervised and reinforced)	T1	15	Chalk & Talk, PPT, Active Learning , Smart board & Tutorial	
		1.10	Neural networks learning rules.	T1			

		1 1 1	C:1-111	Т1		
		1.11	Single layer feed forward neural networks: concept of	T1		
			pattern and its types			
		1.12	erceptron training and	T1		
		1.12	classification using Discrete	11		
			andContinuous perceptron			
			algorithms			
		1.13	linear separability	T1		
		1.14	XOR function.	T1		
	IIN	l	- Multi-layer feed forward		2	
	011	2.1	Generalized delta rule	T1, T2		
2		2.2	Back Propagation algorithm	T1, T2		
_		2.3	Radial Basis Function (RBF)	T1, T2		G1 11 0
		2.3	network	11, 12	10	Chalk &
		2.4	Kohonen's self-organizing	T1	10	Talk,
	CO2: To utilize	∠. '1	feature maps (KSOFM)	11		PPT
	different algorithms	2.5	Learning Vector Quantization	T1		Tutorial,
	of ANN.	2.3	(LVQ)	11		Active
		2.6	Bidirectional Associative	T1		Learning
		2.0	Memory(BAM)	11		Smart
		2.7	Hopfield Neural Network.	T1		board&C
		2.7	Hopfield Neural Network.			ase
						Study
	UNI	T III	- Classical Sets and Fuzzy			
		3.1	Introduction to classical sets	T1, T2		Chalk &
						Talk,
		3.2	properties	T1, T2		PPT,
3			Fish	,	15	Smart
	CO3: To distinguish	3.3	Operations and relation	T2		board'La
	between classical	3.4	Fuzzy sets - Operations -	T1, T2		
	and fuzzy sets.		Properties	,		b,
		3.5	Fuzzy relations	T2		Tutorial
		3.6	Cardinalities	T2		
		3.7	Membership functions.	T2		
		3.7	Wembership functions.	12		
		T T	⊥ NIT IV-Fuzzy Logic Modu	les		
		4.2	Membership value	T1, T2	10	
		7.2	assignment	11, 12	10	
	CO4:To illustrated	4.3	development of rule base and	T1		
	different modules of	7.5	decision making system	11		
	fuzzy controller.	4.4	Defuzzification to crisp sets	T1, T2		
	Tuzzy controller.	¬. -	Defuzzification to effsp sets	11, 12		
		4.5	Defuzzification methods	T1, T2		
		_	UNIT V -Applications			
		5.1	Load flow studies	T1, T2		Chalk &
		J.1	Load How Studies	11,12		CHAIK &

		5.2	load forecasting	T1, T2		Talk,	
5	CO5: To analyze applications of neural networks and fuzzy logic.	5.3	reactive power control.	T2	11	PPT Tutorial, Active Learning	
		- I		Economic load dispatch	T2		
		5.5	5.5 speed control of DC motors		&		
	TODAY TO GIVE	5.6	single area and two area load frequency control.	T2		Seminars	
			TOTAL		61		

CO1	Analyse different models of artificial neuron & Use learning methods of ANN.	APPLY	K3
CO2	Evaluate different paradigms of ANN.	APPLY	К3
CO3	Classify between classical and fuzzy sets.	APPLY	К3
CO4	Illustrate different modules of Fuzzy logic controller.	ANALYZE	K4
CO5	Apply Neural Networks and fuzzy logic for real-time applications.	APPLY	К3

CO-PO MAPPING: (1: Slight [Low]; 2: Moderate [Medium]; 3: Substantial [High]]; '-': No Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1-K3	2	3	3	3	2	<u>3</u>	2	-	<u>3</u>	<u>3</u>	3	3
CO2-K3	2	3	2	2	2	3	2	-	3	3	3	3
CO3-K3	3	3	2	3	2	3	2	-	3	3	3	3
CO4-K4	3	3	2	3	2	3	2	2	2	3	2	2
CO5-K3	2	3	2	3	2	3	2	-	3	3	3	3

S.NO	GRADUATE ATTRIBUTION	ACTION VERBS	LEVEL
1	ENGINEERING KNOWLEDGE	APPLY	K3
2	PROBLEM ANALYSIS	ANALYZE	K4
3	DESIGN DEVELOPMENT OF SOLUTIONS	UNDERSTANDING	K2
4	INVESTIGATION OF COMPLEX PROBLEMS	APPLY, ANALYZE,	K3,K4
5	MODERN TOOL USAGE	APPLY	К3
6	ENGINEER AND SOCIETY		
7	ENVIRONMENT AND SUSTAINABILITY		
8	ETHICS	ANALYZE	K4
9	INDIVIDUALS AND TEAM WORK	APPLY, ANALYZE	K3,K4
10	COMMUNICATION	APPLY, ANALYZE,	K3,K4
11	PROJECT MANAGEMENT AND FINANCE	APPLY	K3
12	LIFE LONG LEARNING		

Text Books:							
S.No.	AUTHORS, BOOK TITLE, EDITION, PUBLISHER, YEAR OF PUBLICATION						
1.	Introduction to Artificial Neural Systems - Jacek M. Zuarda - Jaico Publishing House - 1997.						
2.	Neural Networks - Fuzzy logic - Genetic algorithms: synthesis and applications by Rajasekharanand Pai – PHI Publication.						
Reference Bool	KS:						
S.No.	AUTHORS, BOOK TITLE, EDITION, PUBLISHER, YEAR OF PUBLICATION						
1.	Artificial Neural Network – B. Yegnanarayana - PHI - 2012.						
2.	Fuzzy logic with Fuzzy Applications – T.J Ross – Mc Graw Hill Inc - 1997.						
3.	Introduction to Neural Networks using MATLAB 6.0 – S N Sivanandam - SSumathi - S N Deepa TMGH.						
4.	Introduction to Fuzzy Logic using MATLAB – S N Sivanandam - SSumathi - S N Deepa Springer- 2007.						

		Name	Signature with Date
i.	Faculty	Rongali Maha Lakshmi	
ii.	Course Coordinator		

HOD PRINCIPAL