

DEPARTMENT OF ELECTRICAL AND ELCTRONICS ENGINEERING LESSON PLAN

Course Code	Course Title	Year/Sem	Branch	Contact Hrs/Week	Section
R20	ELECTRICAL CIRCUIT ANALYSIS -	II/I	EEE	6	EEE
	II				

COURSE OBJECTIVES:

- 1. To study the concepts of passive elements, types of sources and various network reduction techniques.
- 2. To understand the applications of network topology to electrical circuits.
- 3. To study the concept of magnetic coupled circuit.
- 4. To understand the behavior of RLC networks for sinusoidal excitations.
- 5. To study the performance of R-L, R-C and R-L-C circuits with variation of one of the parameters and to understand the concept of resonance.
- 6. To understand the applications of network theorems for analysis of electrical networks.

Unit No.	Out Comes	TOPIC(S)		BOOK Reference	Total periods	Delive ry Metho d	GATE / IES
		UNI	T I - Balanced and Unbalanced Th	ree phase circu	iits		
		1.1	Analysis of three phase	T1		Chalk	
	ns		balanced circuits			&	
	110.	1.2	Phase sequence, star and delta	T1		Talk,	
	va		connection of sources and loads		14	PPT,	
	To know the characteristics of various power semiconductor.	1.3	Phase sequence, star and delta	T1		Activ	
	tics		connection of sources and loads				
	ris r.	1.4	Relation between line and	T1		e	
	cte		phase voltages and currents			Learni	
	To know the character power semiconductor.	1.5	Analysis of balanced three phase	T1		ng,	
	ch		circuits			Smart	
1	the	1.6	Measurement of active	T1		board	
	Sel		and reactive power			&	
	knc ver	1.7	Analysis of three phase	T1		Tutori	
	[0] 00		unbalanced circuits			al	
		1.8	Loop method	T1			
	CO1:	1.9	Star-Delta transformation	T1			
	U		technique				

		1.10	Two-wattmeter method for	T1		
		1.10		11		
			measurement			
			of three phase power.		-	
		1.11	Two-wattmeter method for	T1		
			measurement			
			of three phase power.		_	
		1.12	Numerical problems	T1		
		1.13	Numerical problems	T1		
		1.14	Numerical problems	T1		
			UNIT II - Transient Analysis in I	OC Circuits	_	
	_	2.1	Transient response of First order			
	L L L L L L L L L L L L L L L L L L L		(R-L, R-C) using	T1		
	rfo		differential equations			Chalk
	be	2.2	Transient response of First order		11	&
	nd		(R-L, R-C) using differential	R2		
	s a		equations			Talk,
	ter	2.3	Transient response of second		1	PPT
	vei		order (R-L-C) circuits using	T1		Tutori
	uo		differential equations			al,
	e	2.4	Transient response of second		-	Activ
	/av	2.1	order (R-L-C) circuits using	T1		e
	M		differential equations			Learni
	ful	2.5	Transient response of First order		-	ng
2	To learn the operation of single phase full-wave converters and perform harmonic analysis of input current.	2.5	(R-L, R-C) using Laplace	R2		Smart
-			transforms	N2		board
	e p	2.0			-	&Cas
	ngl cu	2.6	Transient response of First order			e
	ration of single pha sis of input current.	ont	(R-L, R-C) using Laplace			Study
	ini		transforms		_	Study
	of	2.7	Transient response of second			
	rat		order (R-L-C) circuits using	R2		
	lys		Laplace transforms		_	
	ana	2.8	Transient response of second			
	ic a		order (R-L-C) circuits using	T1		
	arr		Laplace transforms			
	To learn the ope harmonic analy	2.9	Numerical problems	T1		
		2.10	Numerical problems	T1		
	C02:	2.11	Numerical problems	T2	1	
	1	UN	IT III – Transient Analysis in AC	C circuits		
	c)	3.1	Transient response of First order			Chalk
	ne e –wave		(R-L, R-C) using differential	T1		&
	e e –		equations			Talk,
	re re	3.2	Transient response of First order		11	
	To learn t on of thre phase full ters and AC/AC		(R-L, R-C) using differential	T1		PPT,
	o le n o has C/		equations			Smart
3	CO3: To learn operation of th phase fu converters and AC/AC	3.3	Transient response of second		1	board'
)3: era nve	5.5	order (R-L-C) circuits using	T1		Lab,
	CO3: opera conve		differential equations	11		Tutori
	-		uniterential equations		1	1 41011

	PWM PWM	5.9 5.10	Composite filters Design of Filters	T2 T2	-	Semin
	fc T T fc fc m	5.8	m-Derived Filter	T2 T2	-	ng &
-	CO5: To learn the operation of PWM inverters for voltage control and harmonic mitigation.		Filter		-	e Learni
5	arn ters olta atic	5.7	Band Stop or Band Elimination	T2	1	Activ
	the ige	5.6	Band Pass Filter	Τ2		al,
	con	5.5	High Pass Filter	Τ2		Tutori
	era	5.4	Low Pass Filter	T2		PPT
	tior l an	5.3	Characteristic impedance	T2	10	Talk,
	d d	5.2	Classification	T1, T2	-	&
		5.1	Need of Filters	T1, T2		Chalk
			UNIT V - Filters			
	Ŭ	4.8	Numerical problems			al
	CO4: To dif cor	4.7	Numerical problems	T2	-	Tutori
	To J diffe conv		Cascaded networks	T2	-	board &
	To learn the operation of different types of DC-DC converters.	4.6	relations	T2	-	Smart
т	the o type 's.	4.5	relations Hybrid parameters and their		-	ng,
4	s of]	4.4	Hybrid parameters and their	R3	-	e Learni
	tion (DC-I	4.3	Two port network parameters – Z, Y, ABCD			Activ
	DC DC	4.2	Two port network parameters – Z, Y, ABCD	T1		Talk, PPT,
			Y, ABCD	T2		&
		4.1	Two port network parameters – Z,		8	Chalk
		5.11	UNIT IV- Two Port Netwo			
		3.10	Numerical problems Numerical problems	 	-	
			Numerical problems	T1 T1	_	
		3.9	Laplace transforms	TT1	-	
			order (R-L-C) circuits using	T1		
		3.8	Transient response of second		-	
			order (R-L-C) circuits using Laplace transforms	T2		
		3.7	transforms Transient response of second		-	
		2.0	(R-L, R-C) using Laplace			
		3.6	transforms Transient response of First order		-	
		3.5	Transient response of First order (R-L, R-C) using Laplace	T2		
			order (R-L-C) circuits using differential equations	T2	-	
		3.4	Transient response of second	TA		al

Course Outcomes:

At the end of the course, student will be able to

CO1	Understand the concepts of balanced and unbalanced three-	UNDERSTAND	K2
	phase circuits.		
CO2	Know the transient behavior of electrical networks with DC	UNDERSTAND	K2
	excitations.		
CO3	Learn the transient behavior of electrical networks with AC	REMEMBER	K1
	excitations.		
CO4	Estimate various parameters of a two port network.	UNDERSTAND	K2
CO5	Understand the significance of filters in electrical networks.	UNDERSTAND	K2

<u>CO-PO MAPPING</u>: (1: Slight [Low]; 2: Moderate [Medium]; 3: Substantial [High]]; '-': No Correlation)

						Cor	relation)						
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
•	CO1-K2	3	3	3	3	2	<u>3</u>	2	=	<u>3</u>	-	3	3
(CO2-K2	3	3	3	2	2	2	2	-	3	-	3	3
(CO3-K1	3			3	2	2	3	-	3	-	3	2
			3	3									
(CO4-K2	3	3	3	3	2	3	2	-	2	-	2	3
(CO5-K2	3	3	3	3	2	2	3	-	3	-	3	2

S.NO	GRADUATE ATTRIBUTION	ACTION VERBS	LEVEL
1	ENGINEERING KNOWLEDGE	APPLY	K3
2	PROBLEM ANALYSIS	APPLY	K3
3	DESIGN DEVELOPMENT OF SOLUTIONS	UNDERSTAND	K2
4	INVESTIGATION OF COMPLEX PROBLEMS	APPLY	К3
5	MODERN TOOL USAGE	APPLY	К3
6	ENGINEER AND SOCIETY	UNDERSTAND	K2
7	ENVIRONMENT AND SUSTAINABILITY	UNDERSTAND	K2
8	ETHICS		
9	INDIVIDUALS AND TEAM WORK	UNDERSTAND	K2
10	COMMUNICATION		
11	PROJECT MANAGEMENT AND FINANCE	APPLY	K3
12	LIFE LONG LEARNING	APPLY	K3

KS:
AUTHORS, BOOK TITLE, EDITION, PUBLISHER, YEAR OF PUBLICATION
Engineering Circuit Analysis by William Hayt and Jack E.Kemmerley, McGraw Hill
Company,9thedition, 2018.
Network analysis: Van Valkenburg: Prentice-Hall of India Private Ltd, 3rd edition,
2019.
e Books:
AUTHORS, BOOK TITLE, EDITION, PUBLISHER, YEAR OF PUBLICATION
Fundamentals of Electrical Circuits by Charles K.Alexander and Mathew N.O.Sadiku, McGraw
Hill Education (India), 6th edition, 2019.
Introduction to circuit analysis and design by Tildon H Glisson. Jr, Springer
Publications, 1st edition, 2011.

3.	Circuits by A.Bruce Carlson, Cengage Learning Publications, 1st edition, 2008.
4.	Network Theory Analysis and Synthesis by SmarajitGhosh, PHI publications, ninth print, 2015.
5.	Networks and Systems by D. Roy Choudhury, New Age International publishers, 2nd
	edition, 2013.
6.	Electric circuit by Joseph Edminister, Schaum's outlines series, seventh edition, 2017.
7.	Electric Circuits by David A. Bell, Oxford publications, 7th edition, 2009.
8.	Circuit Theory (Analysis and Synthesis) by A.Chakrabarthi, DhanpatRai&Co, 7 th - Revised
	edition, 2018)

		Name	Signature with Date
i.	Faculty	Siyyadri Jyothi Rani	
ii.	Course Coordinator		

HOD

PRINCIPAL