

LECTURE SCHEDULE FOR POWER SYSTEM ANALYSIS

NAME OF THE FACULTY:

DESIGNATION: ASSISTANT PROFESSOR

BRANCH: EEE

DEPARTMENT: ELECTRICAL AND ELECTRONICS ENGINEERING

Course Objectives:

- **CO1.** To develop the impedance diagram (p.u) and formation of Ybus
- **CO2.** To learn the different load flow methods.

CO3. To learn the Zbus building algorithm.

CO3. To learn short circuit calculation for symmetrical faults

CO4. To learn the effect of unsymmetrical faults and their effects.

CO5. To learn the stability of power systems and method to improve stability.

Unit No	Proposed date of completion	Name of the Topic	Text books/ Reference books	No. of classes required	Actual date of completion	Mode of Teaching	
Bridge Course							
Bridge course		Introduction to Power Generation and Transmission: Components of power systems		1		CHALK AND TALK	
		Basic Definitions, Energy and Energy Relationships,Sources of energy		1			
		Electrical energy generation arrangement		1			
		Power generation fundamental problem,Basic power station design considerations		1			
		Basic Definition/Terminology: Why do we need new transmission?		1			
		Goals of Transmission Planning		1			
	TOTAL			6			
		Circuit Topology & Per	Unit Repres	entation			
		Graph theory definition	i	1			
Ι		Formation of element node incidence matrices		2			
		Formation bus incidence matrices		2			
		Primitive network representation		1			
		Formation of Y–bus matrix by singular transformation methods.	T2/R2	1			
		Formation of Y–bus matrix by direct inspection methods.		1		CHALK	
		Problems		1		AND TALK	
		INTRODUCTION:Per Unit Quantities		1			
		Single line diagram and Problems		1			
		Impedance diagram of a power		1			
		system and Problems		1			
		Problems		1			
		REVISION		1			
		TEST		1			
	ΤΟΤΑΙ			15		1	

YEAR/SEM: III/II ACADEMIC YEAR: 2023-24 REGULATION: R-20 SUBJECT CODE:

	Power Flow Studies						
	INTRODUCTION		1				
	Necessity of power flow studies		1				
	Derivation of static power flow equations		1		-		
	Power flow solution using Gauss-Seidel		1				
	Broblems		2				
II	Nowton Panhson Mothod (Poetangular and	T2/R2	<u>∠</u>				
	nolar coordinates form)		1		CHALK AND TALK		
	Problems		2				
	Decoupled and Fast Decoupled methods (Algorithmic approach)		1				
	Problems on 3-bus system only.		3		-		
	REVISION		1				
	TEST		1				
	TOTAL		15				
	Z-Bus formulation and Syn	nmetrical Fa	ault Analysis		-		
	INTRODUCTION		1		-		
	Formation of Z–Bus: Partial network		1				
	Algorithm for the Modification of Zbus Matrix						
	for addition element for the following cases:		2				
	Addition of element from a new bus to						
	reference	T2/R2					
	Addition of element from a new bus to an old		2				
	reference		2				
	Addition of element between two old busses		1				
	Problems		2		CHALK AND TALK		
	Modification of Z–Bus for the changes in		2				
III	network (Problems).		Δ				
	INTRODUCTION		1				
	3–Phase short circuit currents of synchronous		1				
	machine						
	Problems		1				
	3–Phase short circuit reactances of		1				
	Problems		1				
	Short circuit MVA calculations.		2				
	Broblome		1				
	REVISION		1		-		
	TEST		1				
	TOTAL		23				
	Symmetrical Components & Ur	nsymmetric	al Fault analys	is			
	INTRODUCTION		1				
	Synthesis of unsymmetrical phasor from their		-				
	symmetrical components						
	Symmetrical components of unsymmetrical		1				
	phasor	4					
	Phase - shift of symmetrical components in		2				
	Υ-Δ				l		

IV	Power in terms of symmetrical components		1			
	Sequence networks – Positive, negative and zero sequence networks	T2/R2	2		CHALK AND TALK	
	Various types of faults LG– LL– LLG and LLL on unloaded alternator		1			
	Unsymmetrical faults on power system.		2			
	Problems		1			
	REVISION		1			
	TEST		1			
	TOTAL		14			
Power System Stability Analysis						
	INTRODUCTION	T2/R2	1			
	Elementary concepts of Steady state		1			
	Dynamic and Transient Stabilities		1			
	Description of Steady State Stability Power Limit		1			
	Transfer Reactance, Synchronizing Power Coefficient		2			
	Power Angle Curve and Determination of Steady State Stability		1			
v	Derivation of Swing Equation		1		CHALK	
-	Determination of Transient Stability by Equal Area Criterion		1		AND TALK	
	Application of Equal Area Criterion		1			
	Methods to improve steady state stability		1			
-	Methods to improve transient stability		1			
	Problems		1			
	REVISION		1			
	TEST		1			
ı	TOTAL		15			
GRAND TOTAL			82			

Course Outcomes:

1. Draw impedance diagram for a power system network and calculate per unit quantities.

2. Apply the load flow solution to a power system using different methods.

3. Form Zbus for a power system networks and analyse the effect of symmetrical faults.

4. Find the sequence components for power system Components and analyse its effects of unsymmetrical faults.

5. Analyse the stability concepts of a power system.

Text Books:

1. Power System Analysis by Grainger and Stevenson - Tata McGraw Hill.2003

2. Modern Power system Analysis – by I.J.Nagrath & D.P.Kothari: Tata McGraw–Hill Publishing Company - 3rd edition - 2007.

Reference Books:

1. Power System Analysis - by A.R.Bergen - Prentice Hall - 2nd edition - 2009.

2. Power System Analysis by HadiSaadat – Tata McGraw–Hill 3rd edition - 2010.

3. Power System Analysis by B.R.Gupta - A H Wheeler Publishing Company Limited - 1998.

4. Power System Analysis and Design by J.Duncan Glover - M.S.Sarma - T.J.Overbye - Cengage

Learning publications - 5th edition - 2011.